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Abstract—An overview of the development of modern approaches to conflict prevention between
aircraft based on deep reinforcement learning is given. The basic concept of reinforcement
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1. INTRODUCTION

Maintaining a safe separation distance, both vertically and horizontally, between any two aircraft
at any time is the most important function of an air traffic control system [1]. Loss of separation
between aircraft is called a conflict. The growing density of air traffic leads to an increase in the
number of potential conflicts, so prevention methods are important to reduce the risk of collisions.
Strategic prevention of potential conflicts based on the global optimization model that generates
conflict-free four-dimensional trajectories for all aircraft in advance fails to manage uncertainty
arising in the dynamics of flights in real time [2]. Tactical real-time prevention of potential conflicts
is critical for ensuring safe air traffic control since it allows for better management of uncertainty
that arises in flight dynamics.

At present, aircraft mainly move along fixed trajectories, with conflict prevention being the
responsibility of air traffic controllers. Tactical decisions are still made by air traffic controllers with
very few changes as compared to decisions made 50 years ago [3]. With the increasing intensity
of air traffic, the workload of air traffic controllers is constantly growing and may exceed human
capabilities. The development of existing methods for assessing the dynamic air situation by an
air traffic controller in order to reduce risk factors, including information overload and lack of
time for functional operations, is considered in [4]. In [5–7], a conception is proposed for the
development of automation tools to increase the capacity and safety of airspace operation in order
to effectively and intelligently support air traffic controllers’ decision-making to prevent conflicts.
The prospective air traffic management involves using free flights when aircraft will move along
arbitrary trajectories and conflict prevention will be ensured by an autonomous air traffic control
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system. Theoretical studies confirm that free flight can potentially increase safety [8] and reduce
fuel consumption [9]. To implement the free flight concept, one needs to “ensure control over
aircraft separation using on-board systems in addition to ground systems. The higher reliability
of such a structure will make it possible to clarify a number of scenarios for simulating the risk
of aircraft collision and will contribute to the creation of safer, more flexible, and more capacious
conditions for air traffic management” [10]. The challenge to develop decentralized autonomous
conflict prevention tools is of fundamental importance for the implementation of the free flight
concept [11]. Methods and algorithms for detecting and preventing dangerous approaches in the
air within the framework of a promising air traffic management system, taking into account flight
safety and efficiency requirements, were studied in [12, 13].

Methods have been developed to provide air traffic controllers with recommendations on con-
flict resolution based on optimal control [14] and mathematical programming [15–18], geometric
optimization [19–21], evolutionary algorithms [22], and the Monte Carlo tree search algorithm [23].
These methods work with the existing air traffic density; however, when it comes to higher density,
their insufficient computational efficiency becomes an issue. It takes them tens or even hundreds
of seconds to come up with a decision. Taking into account the uncertainty inherent in air traffic
significantly increases the computation time, making the methods less capable of quickly generating
decisions. Most conventional approaches to ensuring separation fail to cope with stochastic envi-
ronments and high air traffic density [24]. New approaches are needed that can effectively respond
to the dynamics of the external environment in real time, for example, based on neural networks
and machine learning [25–27].

Recently, deep reinforcement learning has been widely used in various fields of aviation since
it can solve decision-making problems unavailable previously due to a combination of nonlinearity
and high dimensionality [28]. The use of deep reinforcement learning will automatically provide
safe and effective conflict prevention decisions to support air traffic controllers’ decision-making
and reduce their workload [29]. In the future, a fully automated control system will become the
ultimate solution for handling high-density, complicated, and dynamic air traffic [30].

Reinforcement learning methods are applied in two stages, viz. the stage of training the model
and the stage of applying the trained model in practice. While it can take long to train a model, the
trained model helps generate decisions very quickly. The decision-making speed is an indicator of
the efficiency and advantage of deep reinforcement learning as compared to conventional algorithms.
Faster decision-making means earlier detection of conflicts and formulation of instructions to reduce
the workload of air traffic controllers and pilots. In [31], the following figures are given (with the
proviso that the data were obtained under different computation conditions)—it takes a mixed-
integer linear programming algorithm 49 seconds to generate a decision, the average decision time
using a genetic algorithm is 37.6 seconds, and a trained deep reinforcement learning agent requires
less than 0.2 seconds. Reinforcement learning methods have a clear advantage over conventional
methods in the speed of computing decisions and the ability to adapt to dynamics of the external
environment, which is critically important when resolving air traffic conflicts.

Research on conflict resolution in air traffic using deep reinforcement learning has been con-
tinuously conducted since 2018, with many models and algorithms proposed during this period
[31]. Conflict resolution models for both air route movement and free flight as well as models with
both discrete and continuous actions are considered. At present, in most cases, two-dimensional
models are proposed for conflict resolution using horizontal maneuvers, three-dimensional models
for horizontal and vertical maneuvers being proposed much less frequently [32]. Two-dimensional
models ignore vertical maneuvers due to the potential instability they can cause in air traffic [33].
The number of conflicting aircraft varies—conflicts between two aircraft and conflicts in groups of
aircraft with a fixed or variable number of aircraft are considered. In [34–36], a hybrid approach
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has been developed that combines the strengths of geometric and reinforcement learning methods
to resolve conflicts. It is argued that the wide range of different optimal decisions found by the
reinforcement learning method shows that the rules of the geometric method should be expanded
to take into account different conflict geometries. In Russia, the problem of aircraft traffic control
based on reinforcement learning is currently being actively studied by State Scientific Research In-
stitute of Aviation Systems (GosNIIAS) experts, with a significant scientific and technical reserve
already made [37].

Given a wide variety of conflict resolution problem statements, when constructing a reinforce-
ment learning model, in many cases, one first develops an interactive environment for an agent to
learn various strategies. An artificial intelligence agent learns using deep reinforcement learning
algorithms through trial and error, applying various possible actions and receiving feedback from
the environment in the form of rewards. The agent’s goal is to study an action selection strategy
that will maximize the mathematical expectation of the total discounted rewards over a long period
of time. The convergence of the reinforcement learning model to the desired outcome is determined
by the choice of the reward function, through which the agent learns to optimize the strategy for
choosing actions in various situations. The reward function has an impact on the learning rate,
convergence, and performance of agents. The principal thing that should be considered in the
reward function is the success or failure of conflict resolution. Moreover, to increase the efficiency
of the model, the reward should take into account the number of maneuvers and the time required
to resolve the conflict. Using the reward function, it is possible to bring the agent’s behavior closer
to the existing rules for conflict resolution by air traffic controllers [38, 39].

Despite the success of reinforcement learning in research on solving air traffic control problems,
two significant challenges remain for this method to be applied in real conditions. The first problem
is the vulnerability of deep neural networks to adversarial attacks, the second is the problem of
the explainability of “black box” models, viz. pilots and air traffic controllers do not understand
how the models make certain decisions [40, 41]. In [42], approaches to resolving these issues in the
autonomous resolution of aircraft conflicts are proposed.

2. REINFORCEMENT LEARNING

2.1. Basic Conception [43]

Machine learning is divided into supervised learning, unsupervised learning, and reinforcement
learning. Supervised learning allows approximating any function; however, it requires labeled data
sets to be available, which is not always so. Unsupervised learning relies on sets of unlabeled data.
Reinforcement learning allows implementing a consistent decision-making process through trial and
error, with the learning data synthesized as the agent interacts with the environment. When using
reinforcement learning, each aircraft is simulated as an interactive agent whose actions are conflict
prevention maneuvers.

Reinforcement learning is based on the Markov model of the decision-making process, in which
the state of the system and the actions of the agent do not depend on how the system came to
this state. The Bellman equations hold for the Markov decision-making process. The basis of the
Markov model of the decision-making process is the environment and the agent operating in it.
The environment is characterized by a set of parameters, and the state of the environment s is a
specific set of values of these parameters. An agent is a program that can analyze the state of the
environment and perform a specific set of actions a ∈ A(s) in each state. As a result of the agent’s
action, the environment switches from the state s to the new state s′ and receives feedback from
the environment in the form of the reward r = R(s, a, s′). In the case of multistep interaction of
the agent with the environment, starting from the state s at the step t to the end of the episode at
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the step T , the total discounted benefit

Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−1rT = rt+1 + γGt+1

is determined, and γ ∈ [0, 1] is the discount coefficient, which specifies the decrease of the value of
the reward received at later steps.

The transition function p(s′|s, a) specifies the probability of transition to the state s′ at the
step t given that the action a was chosen in the state s at the step t− 1

p(s′|s, a) = P (St = s′|St−1 = s,At−1 = a),
∑
s′∈S

p(s′|s, a) = 1, ∀s ∈ S, ∀a ∈ A(s).

A strategy (or a policy) is a function π(a|s) that matches the action of the agent with each
non-terminal state of the environment.

The expected benefit when an agent follows the strategy π in the state s is called the state value
function

Vπ(s) = Eπ[rt+1 + γGt+1|St = s].

However, the state value function does not allow us to know the expected benefit from the agent
performing the action a in the state s when it follows the strategy π; it is specified by the action
value function

Qπ(s, a) = Eπ[rt+1 + γGt+1|St = s,At = a].

The basic concept of reinforcement learning—generalized iteration with respect to strategies—is
an iterative procedure. The step of this procedure involves two processes, viz. evaluating the
current strategy to refine the current approximation of the value function followed by improving
the strategy in accordance with the changed value function.

The value function can be represented as

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)],∀s ∈ S.

The iteration step to refine the value function is to calculate it for the action with the highest value

Vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γVk(s
′)].

The action that delivers the maximum value to the Q-function is called greedy. The strategy can
be improved by using a strategy optimization algorithm, which consists in choosing a greedy action
with respect to the Q-function

π′(s) = argmax
a

∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)].

When studying the value function, it is very important to maintain a balance between choosing a
greedy action and choosing a random action for exploration. There are many different approaches
to solving this problem such as the epsilon-greedy strategy with a random action selected with
the epsilon probability, the epsilon greedy strategy with decay with epsilon decreased as the agent
learns, action selection strategies using knowledge gained up to the current step about the value
and exploration degree of actions, etc.

The two processes considered stabilize when the value function matches the strategy, and the
strategy is greedy with respect to the value function. The strategy and the value function are
optimal if

V ∗(s) = max
π

Vπ(s).

2.2. Reinforcement Deep Learning Algorithms [44, 45]

For simple examples, the action value function is represented as a table. For important practical
tasks, it is impossible to implement a table representation of value functions due to the large number
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Fig. 1. The operation principle of the deep Q-learning algorithm.

of states, continuous variables or actions. This is the case when deep reinforcement learning is
applied with deep learning algorithms with a teacher used to approximate value functions based
on the samples (s, a, r, s′) formed as the agent interacts with the environment.

At present, this approach is being rapidly developed in the field of aviation conflict prevention,
and various algorithms for the value function approximation and strategy optimization are being
proposed and studied. The deepQ-learning (deep Q-network, DQN) algorithm is widely used, which
leverages two key technologies, viz. experience replay and the dual network structure. Figure 1
shows the operation principle of the DQN algorithm [46].

The experience replay consists in creating the replay bufferD that accumulates a large number of
samples. The mini-sets U(D) for network training are selected from the accumulated replay buffer
uniformly and randomly and thus correspond to different trajectories and policies, increasing the
network training stability. The dual network structure is based on using the same network with
different sets of parameters. A dynamic network is used to approximate the current valueQ(s, a;ωi),
and the parameters of this network ωi are updated at each time step i. The target network is used
to obtain a more stable target value Q, and the parameters of the target network ω− are updated
in N time steps. The loss function has the form

Li(ωi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′;ω−)−Q(s, a;ωi)

)]
.

The loss function is optimized by the gradient descent method

∇ωiLi(ωi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′;ω−)−Q(s, a;ωi)

)
∇ωiQ(s, a;ωi)

]
.

The difference between the double deep Q-network (DDQN) method [47] and the DQN method is
that the dynamic network parameters are used instead of the target network parameters to select
an action in the equation.

∇ωiLi(ωi) = E(s,a,r,s′)∼U(D)

[(
r + γQ(s′, argmax

a′
Q(s′, a′;ωi);ω

−)−Q(s, a;ωi)

)
∇ωiQ(s, a;ωi)

]
.

The DQN and DDQN algorithms are used in conflict prevention models with a discrete action
space [48–52].
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Methods that use a continuous action space to resolve conflicts between aircraft are also proposed
[34, 53–55]. In this case, strategies are represented by parameterized stochastic functions πθ(a, s)
that are optimized using actor-critic algorithms. In these algorithms, in addition to the neural
network used to evaluate the strategy (the critic), a second neural network is used to form a
strategy based on optimizing the value function (the actor).

For the trajectory τ = S0, A0, R1, S1, . . . , ST−1, AT−1, RT , ST , the function G(τ) is the total
discounted benefit, and πθ(At|St) is the probability of choosing the action At in the state St at the
step t. The actor’s network is updated according to the gradient of the value function

∇θEτ∼πθ
[G(τ)] = Eτ∼πθ

[
T∑
t=0

Gt(τ)∇θ log πθ(At|St)

]
.

3. AIRCRAFT CONFLICT PREVENTION MODELS

3.1. Conflict Prevention Models for Two Aircraft

A conflict resolution strategy can include both two-dimensional (2D) maneuvers such as changing
the course and speed in a plane airspace and three-dimensional (3D) maneuvers when there is also
a change in altitude. Although a 2D model is not as effective in conflict resolution as a 3D model is,
maneuvers in the two-dimensional airspace cause less discomfort for passengers and do not distort
the vertically stratified structure of the airspace [56]. If they are too large, neural networks can
be harmful to agent training due to an excessively big number of parameters. Therefore, smaller
neural networks for 2D models have greater potential for the model to be expanded further to take
into account more real-world factors [30].

The first studies on aircraft conflict prevention using reinforcement learning considered conflict
resolution between two aircraft in a two-dimensional airspace. In one of the first works on aircraft
conflict prevention, flights along routes were considered, with a hierarchical structure of deep rein-
forcement learning proposed [48]. The training environment used was the NASA Sector 33 software
containing 35 air traffic control problems involving two to five aircraft. The hierarchical structure
includes a parent agent designed to solve the problem of choosing aircraft routes at the beginning
of the episode and the child agent that controls actions to change speeds on the selected routes.
The hierarchical structure allows separating the route selection actions performed at the beginning
of the episode and the speed control actions during the episode. A reinforcement learning algo-
rithm based on a dual deep Q-network is used to train the agents. The first neural network (the
target one) is used to select actions that are greedy with respect to the current Q-function, and
the second neural network (the dynamic one) is used to adjust the Q-function based on evaluating
the success of the actions performed. It was shown in [48] that a hierarchical deep reinforcement
learning agent can choose optimal combinations of routes and speeds in order to avoid a conflict
between two aircraft flying along routes.

One of the first works on reinforcement learning for conflict resolution in free flight deals with the
case of two aircraft, with uncertainty taken into account [53]. An environment has been developed
for simulating potential conflicts for agent training and testing. Figure 2 shows a conflict between
two aircraft in a circular airspace with the radiusR of 50 nautical miles and a maneuver to prevent it.
The trajectory of the own aircraft is A1B1, the trajectory of the intruder is A2B2, and QP is the
closest distance between the two aircraft at which they lose safe separation if none of them makes a
maneuver. A single maneuver to change the course in the continuous two-dimensional space is used
as a conflict prevention action. The maneuver A1MNB1 in Fig. 2 represents a series of actions
performed by the own aircraft—deviating from the original trajectory at the point M by changing
the course by the angle α, then moving along the vector MN , and turning to the point B1 at the
point N .
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Fig. 2. The scenario of a conflict between two aircraft and a maneuver to prevent it.

Fig. 3. Conflict scenario with several aircraft.

The reward of the agent being trained is calculated as the sum

Rfinal = 5 +Rconflict +Rmaneuver +Rdeviation,

i.e., negative rewards are added to reward 5, viz. Rconflict = −3 if the maneuver fails to resolve
the conflict, Rmaneuver = −2 if it goes beyond the boundaries of the area or if the angle β > 120◦,
Rdeviation = −SΔMNB1 , the deviation from the initial trajectory is estimated by the area between
the trajectory of the maneuver and the initial trajectory.

The deep deterministic policy gradient (DDPG) method, which is one of the advanced methods
of deep reinforcement learning for continuous action space control problems, is used [44]. The
algorithm uses two neural networks, viz. the critic’s network to study the utility function of state-
action pairsQ(s, a) and the actor’s network to map the state into a deterministic action based on the
policy gradient. The performance of the DDPG algorithm for preventing air traffic conflicts is close
to the performance of conventional methods, yet the calculation time is significantly reduced [57].

In [54, 56, 58, 59], the conflict prevention problem statement is generalized to the case when
there are several other aircraft in the area in addition to the own aircraft and the intruder. In this
case, secondary potential conflicts (the domino effect) may arise when maneuvering to prevent the
conflict [60].

In [54], a two-dimensional environment for simulating free flights was developed, which can be
applied to several aircraft in a sector (no more than 5) (Fig. 3).
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It is assumed that there are no conflicts between these aircraft, and conflicts can be caused by
an aircraft entering the sector that aim to fly from the starting point to the end one in minimal
time without collisions with other aircraft. An actor-critic algorithm with the fixed number K of
actions (control cycles) is proposed. To avoid conflicts, actions are generated to change the heading
angle of the entering aircraft. At each time step, the agent selects the action A = {ρ, ϕ|ρ ∈ [0, L],
ϕ ∈ [−π, π]} described by a two-dimensional polar coordinate, where ρ, ϕ are the polar radius and
the angle.

The reward function

Rt =

⎧⎨⎩−1 if there is a conflict,

1− 1

K
× |Δϕt|

π
, otherwise.

The value function is approximated using the neural network V̂ (St, ω) ≈ Vπ(S), where ω are the
weight of neurons.

For the critic’s network, δ is specified

δt = Rt + γV̂ (St+1, ω)− V̂ (St, ω),

where Rt is the immediate reward, V̂ (St+1, ω) is the value of the value function of the next state,
and V̂ (St, ω) is the value of the value function of the current state. The least squares method is
used to update the parameters ω ← ω + αω∇δ2; α is the learning rate.

The policy gradient method is used for the actor’s network. The equation

lnπ(ρt, ϕt|St, θ) = lnπ(ρt|St, θ) + lnπ(ϕt|St, θ)

is used for the action (ρ, ϕ), where π(ρt, ϕt|St, θ) is the probability of choosing ρ and ϕ in the
state St with the parameters θ, π(ρt|St, θ) is the probability of choosing ρ in the state St with the
parameters θ, and π(ϕt|St, θ) is the probability of choosing ϕ in the state St with the parameters θ.
The parameters θ are updated by the formula

θ ← θ + αθδt∇ ln π(ρt, ϕt|St, θ).

The variable number of control cycles is not reflected in the reward function, and it cannot be
adjusted dynamically. Since the computational efficiency of a well-trained agent is very high, several
agents with different values K, for example K = 1, 2, 3, are proposed to be trained. In the real-
world air traffic control process, one can quickly calculate several control options and select the best
decision from several options. The simulation results confirmed that deep reinforcement learning
can be used for conflict resolution and has advantage in computational efficiency as compared to
known methods.

In [61], a model for two-aircraft conflict resolution was proposed and analyzed, taking into
account wind-related uncertainty. The proposed conflict prevention method is applicable in the
case when uncertainty associated with the direction and speed of the wind is unstable (stochastic)
throughout the simulation.

In [46], a strategy for resolving two-aircraft conflicts in the three-dimensional space based on deep
reinforcement learning is considered. One conflict between two aircraft is selected for resolution
from an air traffic scenario that may contain several conflicts. The conflict resolution model is
simulated as a discrete-time Markov decision-making process. The agent uses altitude adjustment,
speed adjustment, or course correction commands to resolve the conflict. The preferences of the
air traffic controller for choosing conflict resolution maneuvers are transmitted to the agent by
adjusting the reward function.
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3.2. Conflict Prevention Models for a Fixed Number of Aircraft

Multi-agent reinforcement learning considers a set of agents that interact with the same en-
vironment [62]. Each agent tries to achieve its goals, which are unknown to other agents. One
of the strategies for solving problems in a multi-agent environment is represented by independent
Q-learning with no communication between agents and other agents considered as part of the en-
vironment [63]. However, when an agent changes its policy, it affects the policies of other agents,
resulting in training instability [64].

In [3, 65, 66], to ensure communication between agents, the state for each agent is proposed
to include information about the state of N closest agents. The state space for an agent has a
constant dimension since it depends only on N closest agents and does not scale to fit the increased
number of agents in the environment. At the same time, it is highlighted that determining which
N closest agents should be considered is very important for a good result to be obtained since
adding irrelevant information to the state space complicates training [3].

In [67], a reinforcement learning algorithm combined with the Monte Carlo tree search (MCTS-
UCT) is presented to solve the problem of self-maintenance of aircraft safe separation given high
air traffic flows in the sector. All agents (aircraft) are at the same flight level, and their strategies
include changing the course and the cruising speed.

The value of the reward for an agent, depending on the state s, is determined as

r(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if s is the target state,

0 if s is LOS or out of the sector boundary,

1− d(o, g)

max d(o, g)
, otherwise,

where the state LOS is the loss of separation, d(o, g) is the distance between the agent’s current
position and its target, and max d(o, g) is the greatest distance between the agent and its target.

Each agent state is considered as a node in the tree, and tree deployment is performed based on
the state values calculated using the formula

UCT (Sj) = r̄j + 2C

√
2 lnN

nj
,

where r̄j is the average value of the reward of the action j for the current agent, N is the counter

of node visits, nj is the action selection counter j, and C = 1
/√

2.

In the process of joint decision-making, all n agents {A1, . . . , An} must share their intention
when choosing each individual action. One iteration of the algorithm of the multi-agent Markov
decision-making process is as follows. First, n agents {A1, . . . , An} are initialized at the level L−1.
All agents continue to follow the default cooperative action policy a−j = {ai from the default
cooperative action policy |i = 1, . . . , n, i �= j}. The agent Aj with the minimum index at the level
L− 1 uses the MCTS-UCT algorithm to select its optimal strategy of actions a∗j using the following
equation

a∗j = argmax
aj

r∗j (s, aj , a−j), j = 1, . . . , n,

where r∗j (s, aj , a−j) is the value of the reward of the agent Aj in the state s when performing the
action aj while the action strategies of other agents are represented as a−j. When calculating a∗j ,
other agents will continue to follow the default action strategy set as a−j = {ai from the default
cooperative action policy |i = 1, . . . , n, i �= j}. When the agent Aj receives its optimal action strat-
egy a∗j , Aj is upgraded to the level L and preserves the action strategy a∗j to update the default
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Fig. 4. Conflict buffer model.

joint decision-making strategy. Then, the next agent, with the minimum index at the level L− 1
chooses its optimal action strategy. This process continues until all agents have their optimal action
strategy {a∗i , i = 1, . . . , n}. The resulting joint decision-making strategies are used for the next time
step Δt for all agents. Iterations are repeated until all agents reach the target state.

In [68], a method of deep ensemble multi-agent reinforcement learning was proposed for dynamic
adjustment of the aircraft speed in real time. The authors claim that the extensive empirical results
obtained using an open-source air traffic control model developed by Eurocontrol and based on real-
world data involving thousands of aircraft demonstrate that the proposed method is significantly
superior to other reference approaches.

In [69], an approach to multi-agent reinforcement learning is proposed for three-dimensional
conflict resolution in a free route space, where agents use a common neural network. The trained
network is deployed on each aircraft to form a distributed real-time decision-making system. In this
case, communication between agents is reduced to informing other agents about the selected actions.
The introduction of the three-dimensional space leads to an explosive increase in the scale of the
neural network and, as a result, to an increase in the training complexity. To overcome this problem,
it is proposed to consider conflicts in three planes rather than the three-dimensional space in the
case of three-dimensional maneuvers, viz. the plane of the current flight level and two adjacent
planes at the levels above and below it. This significantly reduces the agent training complexity.
A conflict buffer model is proposed in which each aircraft is assigned a protective zone and a warning
zone. Figure 4 [69] illustrates the conflict buffer model, where RW and RP stand for the radii of
the warning zone and the protective zone, respectively. Intruders found inside the protective zone
always receive a big fine while intruders found in the warning zone receive a small fine.
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The number of conflicting aircraft that an agent can monitor is fixed in the neural network
structure and should not change. To solve this problem, a partial surveillance model has been
developed, which considers only a fixed number of aircraft that pose the greatest threat, for ex-
ample, those closest to the agent. The DQN algorithm with improvements, called Rainbow, is
used to implement reinforcement learning [70]. To train and evaluate the proposed approach, a
simulation environment has been created that takes into account flight uncertainty (resulting, for
example, from mechanical and navigational errors and wind). Experimental results show [69] that
the proposed method can resolve conflicts in scenarios with a much higher traffic density than
that in today’s real-world situations. 2D and 3D models are compared. The training time of the
2D model is less than 1% of the training time of the 3D model; however, this does not affect the
performance of the model during the decision-making due to the nature of reinforcement learning
methods. In some scenarios, the 3D model can resolve conflicts more easily by changing the flight
level. The 3D model is shown to be superior to the 2D model in terms of success rate and the rate
of reduction of additional flight range.

With centralized air traffic control, when the air traffic controller transmits directives to the
pilots, actions should be quite rare. However, in models with a continuous action space, agents can
make small adjustments to their trajectories at each step. In [71], a multi-agent deep reinforcement
learning method with a continuous action space is proposed, in which the number of actions is
significantly reduced using a priority mechanism. At each time step, a maximum of one aircraft
with the highest priority can perform actions. This approach significantly reduces the number
of actions taken while maintaining a high level of conflict prevention performance. The resulting
decisions are suitable for centralized air traffic control, where the number of directives that can be
transmitted to the pilot is limited. In [72], the priority mechanism based on a dynamic assessment
of the proximity of conflicts between aircraft is used in a model with a discrete action space.

3.3. Conflict Prevention Models for an Arbitrary Number of Aircraft

Above, we considered the models, in which the agent has access to information about the state of
N nearest aircraft, where N is the hyperparameter selected during the experiments; however, this
limits the adaptability of the model. Using the parameter N is a disadvantage since a small change
in the location of the aircraft can change the set of N nearest aircraft and, thus, change the input
data for the neural network. The neural network should understand that it is almost the same
state of the airspace despite the aircraft rearrangements—however, this can be challenging [49].
The solution to this problem is to use more advanced neural network architectures, search for other
ways to represent data, use data improvement algorithms, and select the most relevant neighboring
aircraft [71]. One of the ways to solve the problem of a variable number of aircraft is to graphically
encode information into fixed-size images and use convolutional neural networks (CNN) to extract
useful information, similar to air traffic controllers’ screens [73]. One can also use recurrent neural
networks (RNN) with long short-term memory (LSTM) cells [74] or controlled recurrent blocks
(GRU) [75] that work with the entire set of aircraft in the environment, encoding the relevant
information into a hidden state of the fixed size.

In [30, 76], multi-agent reinforcement learning is considered to resolve conflicts on routes and
intersections in a structured two-dimensional airspace between a variable number of aircraft. The
state information is encoded using the LSTM neural network into a fixed-length vector. The agent
has access to the encoded information on all aircraft in the sector; in this case, there is no need
to determine the value N for each new environment. The BlueSky air traffic control simulator is
used as a learning environment [77]. Centralized training and a decentralized execution scheme
are used, in which one neural network is trained. This network is used by all agents to receive
speed recommendations, and depending on the state, the actions of the agents may vary. The
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environment is stochastic because of the uncertainty in the actions of other agents; therefore, the
“actor-critic” algorithm called “proximal policy optimization” is used [78].

To ensure the safe separation requirements, an identical reward function is introduced for all
agents

rt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if dco < dLOS,

−α+ δdco if dco < 10 & dco � dLOS,

0, otherwise,

where dLOS is the minimum safe separation distance in nautical miles (dLOS = 3), dco is the distance
from the own aircraft to the nearest aircraft in nautical miles, α and δ are small positive constants to
fine agents as they approach losing the safe separation distance. Three practical air traffic scenarios
demonstrate the ability to solve decision-making problems with a variable number of agents and
uncertainty [30].

Recurrent neural networks process input data sequentially, and the output data depends on
this sequence. This can lead to undesirable results in situations when the input sequence does not
matter. Transformers were introduced as an alternative to recurrent neural networks for sequential
processing of input data in order to ensure parallel learning [79]. Transformers calculate the relative
importance of so-called tokens containing information about the states of aircraft using the attention
mechanism. In [80], absolute states are used for observation—the coordinates and velocities of the
aircraft in the reference system associated with the environment. In [81], relative states are used—
the coordinates and velocities of the aircraft in the reference system of the own aircraft with the
positive direction of the abscissa axis in the direction of the flight. However, studies have not
yet shown the superior performance of the transformer network architecture as compared to feed-
forward neural networks and recurrent neural networks to ensure safe aircraft navigation [81].

4. COOPERATIVE CONFLICT PREVENTION STRATEGIES
BASED ON NEURAL COMMUNICATION NETWORKS

Communication is a key ability of cooperative multi-agent systems, in which agents can sig-
nificantly benefit from the information exchange prior to performing joint actions [82]. A model
based on neural communication networks, which allows agents to exchange information through
a communication protocol, can allow agents to develop cooperative strategies for joint actions to
prevent conflicts [83].

In [80], aircraft in the airspace are simulated as agents of a cooperative multi-agent system. The
state si = [xi, yi, vi, χi] of each agent i ∈ N consists of coordinates in the Euclidean space xi, yi, the
velocity vi, and the course χi. The state changes according to the formulas

xi(t+ 1) = xi(t) + vi(t) sinχi(t)Δt,

yi(t+ 1) = yi(t) + vi(t) cos χi(t)Δt,

vi(t+ 1) = vi(t) + Δvi,

χi(t+ 1) = χi(t) + Δχi,

where Δvi and Δχi are the increments of the velocity and the course, and Δt is the simulation
step.

The interaction between agents is represented as the graph G = (V,E), each node corresponds to
one agent i ∈ N , and agents that can communicate are connected by the edges eij . The observation
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vector for the current state of the ith agent consists of five elements

oi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

di/D

cos(χi − ψi)

sin(χi − ψi)

v̄i

v̄ei

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

,

where di is the shortest distance to the exit point from the observation area, D is the normalizing
coefficient, ψi is the bearing angle to the exit point, and the normalized velocity and the velocity
deviation are determined as

v̄i =
vi − vmini

vmaxi − vmini

; v̄ei =
vi − vopti

vmaxi − vmini

.

At each step, the agent encodes its state oi into a hidden state using the neural network

h
(0)
i = fh(oi).

Then, the communication phase begins, consisting of C communication rounds. At each round
c = 0, 1, . . . , C − 1, each agent’s message is calculated as a weighted sum of the edges that connect
it to its neighbors based on the attention mechanism,

m
(c+1)
i =

∑
j∈Ni

a
(c+1)
ij e

(c+1)
ij ,

where Ni is the set of nodes connected by the edges with the node i.

The edge values are calculated using a neural network, taking into account the hidden states of
the agents

e
(c+1)
ij = f (c)

e

(
[h

(c)
i , h

(c)
j , e

(c)
ij ]

)
.

The attention weights are calculated by the formula

a
(c+1)
ij =

exp
(
v
(c)
a f

(c)
a ([h

(c)
i , h

(c)
j , e

(c)
ij ])

)
∑

j∈Ni
exp

(
v
(c)
a f

(c)
a ([h

(c)
i , h

(c)
j , e

(c)
ij ])

) ,
where v

(c)
a is the vector of parameters.

Each node then updates its state using the updating function

h
(c+1)
i = U (c)

(
h
(c)
i ,m

(c+1)
i

)
.

After C rounds of communication between the nodes, a probability distribution is generated over
all possible actions for each agent

ai = fa
(
[h

(0)
i , h

(C)
i ]

)
.

The expected reward, which is the same for all agents, is calculated using the read function

V π = fv

( ∑
i∈N

fy([h
(0)
i , h

(C)
i ])

)
,

fh, f
(c)
e , f

(c)
a , fa, fv, fy are feed-forward neural networks.

At each time step, each agent chooses an action ai, followed by the environment giving a collective
reward to the team.

The experiments on training the presented model showed that the total reward per episode
increases, and the number of expected conflicts decreases as the number of episodes grows, i.e.,
agents can improve their policies based on their interaction with the environment.
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5. USING GRAPH-BASED DEEP REINFORCEMENT LEARNING
TO PREVENT CONFLICTS

In many studies, a multi-agent statement combines the state vectors of several aircraft into a
multidimensional vector of the aggregate state using the concatenation operation [30, 84]. However,
aggregating the states of all nearest neighboring aircraft, regardless of whether there are potential
conflicts between them, can lead to processing redundant data and reduce the efficiency of the
model. Such vectors cannot encapsulate spatiotemporal dynamics and distinguish between differ-
ent levels of risk and urgency in conflict scenarios. Graph reinforcement learning (Graph RL) is
designed to process data structured in the form of graphs [85]. Using graph-inherent properties, one
can improve scalability, efficiency, and adaptability when working with multidimensional and dy-
namic environments [86]. Graph reinforcement learning allows using graph properties to represent
relationships between planes [87–89]. Graph deep reinforcement learning methods are invariant to
the order and number of planes.

In [49], a graph deep reinforcement learning method is proposed for air traffic control in the
three-dimensional airspace. To prevent conflicts, the altitude, course, and speed of the aircraft are
selected. Planes are represented by the graph vertices; nodes in this graph are connected if the
distance between a pair of planes is below a certain threshold. Two approaches are compared,
viz. graph neural networks with convolutional layers (GCN) [90] and graph neural networks with
the attention mechanism (GAT, Graph Attention Network) [91] used to efficiently aggregate in-
formation from the neighboring nodes in the graph. With a normal traffic density, a model with
the attention mechanism can prevent 100% of potential collisions and 89.8% of potential conflicts.
However, performance deteriorates as the traffic density grows. With the increasing traffic flow
density, both methods have difficulty overcoming congested airspace.

In [92], a graph convolutional network with LSTM cells is used to collect the space-time depen-
dencies of flight data, and a graph neural network with increased attention is used to focus on the
information characteristics of the key nodes.

In [93], a conflict graph that develops over time was proposed to be used, in which aircraft
are represented by nodes, and the connections between them indicate the urgency of the conflict.
The urgency of the conflict is determined by the time before the conflict if the current course and
speed of the aircraft located at the points A and B (Fig. 5) are maintained. The observation is
conducted from the point A. The point B is the center of a circle with the radius R (the radius
of the protective zone). Tangents to this circle are drawn from the point A, forming an obstacle

Fig. 5. Conflict geometry.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 9 2025



AN OVERVIEW OF CONFLICT PREVENTION METHODS 859

Fig. 6. Circular conflict scenario.

cone; vA and vB are the velocities of the aircraft A and B. A potential conflict exists if the relative
velocity vector vr = vA − vB is inside the obstacle cone. The time before the conflict is determined
based on a geometric model of the relative position and speeds of the pair of the aircraft A and B

tc =
Lc

|vr| ,

where Lc is a straight line segment from the point A along the relative velocity vr to the point of
intersection with the protective zone of the aircraft B. The edge weight of the conflict graph ωAB

is normalized in the range [0, 1] as follows

ωAB = e−tc .

If there is no potential conflict, then ωAB = 0; if the planes collided, then ωAB = 1.

Further, based on the conflict graph, information is aggregated using a multi-head neural at-
tention network. The time regularization mechanism is used to increase the training stability. The
efficiency of the proposed algorithm is demonstrated, among other things, by two visual scenar-
ios [93]. Circular conflict scenario: In this setup, planes start flying at points in a circle with a
radius of 160 nautical miles and fly in opposite directions. This configuration leads to the fact
that each plane conflicts with all the others at the center of the circle. The experimental results
for scenarios involving 8 and 16 aircraft are shown in Figs. 6a and 6b, respectively. These results
demonstrate the ability of the proposed method to manage characteristic circular potential con-
flicts and prevent all potential collisions. Intersection conflict scenario: Aircraft are divided into
two groups, each containing an equal number of them. These groups fly along the intersecting
trajectories, causing conflicts at each intersection. Testing was carried out with 20 and 30 aircraft.
As we can see in Figs. 7a and 7b, for 20 and 30 aircraft, respectively, the proposed method helps
determine conflict-free route points at each time step with minimal deviations from the original
trajectories.

Despite significant research successes, there are serious obstacles to the practical application of
reinforcement learning methods in the field of air transport due to the tight certification standards
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Fig. 7. Intersection conflict scenario.

in the aviation industry. The current regulatory and legal framework fails to provide adequate and
acceptable means of meeting the requirements for reinforcement learning applications, and thus
there is no legal framework yet in place for their safe use. It is necessary to develop certifica-
tion recommendations for reinforcement learning models designed for air transport, so that these
promising methods can be used in real conditions [94].

6. CONCLUSIONS

It follows from the review of publications that air traffic conflict prevention methods based on
deep reinforcement learning are aimed at solving two principal tasks, viz. automatic generation
of decision options to support air traffic controllers given the centralized air traffic control and
support of autonomous conflict resolution systems in free flight. Models with discrete actions are
mainly offered to support decision-making by air traffic controllers. Continuous-action models are
designed for autonomous conflict resolution in free flight and allow all agents to perform trajectory
correction actions at each time step.

The graph reinforcement learning approach seems to be most promising since the information
represented in the form of a conflict graph that develops over time helps reduce the amount of
redundant information processed and ensures the scalability of models for different numbers of
aircraft. The attention mechanism allows singling out the most urgent information contained
in the conflict graph, providing improved conflict prevention strategies in terms of security and
efficiency.

With the development of research, the potential for practical application of conflict prevention
methods between aircraft based on deep reinforcement learning is becoming more and more obvi-
ous. A review of publications shows that the studied reinforcement learning methods demonstrate
promising results due to adaptive decision-making in real time to prevent air traffic conflicts. How-
ever, there are still serious unresolved issues preventing these methods from being applied in air
traffic control practice, where safety is critical. It is impossible to train models in real-world condi-
tions because of the potential damage, and it is impossible to perfectly simulate those conditions.
The shift in distribution between the simulated environment and the reality may limit the efficiency
of reinforcement learning models. Certification of such models should be one of the directions of
research in this area.
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